Computational investigations of nuclear magnetic resonance and magneto-optic properties at the basis-set limit
نویسندگان
چکیده
Theoretical examination of traditional nuclear magnetic resonance (NMR) parameters as well as novel quantities related to magneto-optic phenomena is carried out in this thesis for a collection of organic molecules. Electronic structure methods are employed, and reliable calculations involving large molecules and computationally demanding properties are made feasible through the use of completeness-optimized basis sets. In addition to introducing the foundations of NMR, a theory for the nuclear spininduced optical rotation (NSOR) is formulated. In the NSOR, the plane of polarization of linearly polarized light is rotated by spin-polarized nuclei in an NMR sample as predicted by the Faraday effect. It has been hypothesized that this could be an advantageous alternative to traditional NMR detection. The opposite phenomenon, i.e., the laser-induced NMR splitting, is also investigated. Computational methods are discussed, including the method of completeness optimization. Nuclear shielding and spin-spin coupling are evaluated for hydrocarbon systems that simulate graphene nanoflakes, while the laser-induced NMR splitting is studied for hydrocarbons of increasing size in order to find molecules that may potentially interest the experimentalist. The NSOR is calculated for small organic systems with inequivalent nuclei to prove the existence of an optical chemical shift. The existence of the optical shift is verified in a combined experimental and computational study. Finally, relativistic effects on the size of the optical rotation are evaluated for xenon, and they are found to be significant. Completeness-optimized basis sets are used in all cases, and extensive analysis regarding the accuracy of results is made.
منابع مشابه
Computational study of energetic, stability, and nuclear magnetic resonance of BN nanotube as a nanosensor
Now a day study on boron nitrid nanotubes are in considerable attetion due to their unique properties in different field of science. In this letter, after final optimization, thermodynamic properties analysis, stabilities, electronic structure and nuclear magnetic resonance parameters including σ isotropic and σ anisotropic tensors and asymmetric parameters of 15N and 11B nuclei are calculated....
متن کاملComputational Investigation on Naphthoquinone Derivatives :Nuclear Magnetic Resonance (NMR) and Quantum mechanic
Naphthoquinones are natural aromatic compounds that can be discovered in various plant families. In recent times a diversity of biological activities of these compounds has been reported. In most cases, these pharmacological activities are related to redox and acid-base properties, which can be modulated synthetically by modifying the substituents attached to the 1, 4- naphthoquinone ring, in o...
متن کاملخواص نوری- مغناطیسی و ضرایب اپتیکی لایههای نازک منگنز-کبالت
Having precise hysterics loop of thin ferroelectric and ferromagnetic layers for optical switching and optical storages are important. A hysterieses loop can be achieved from a phenomenon call the magneto-optic effect. The magneto-optic effect is the rotation of a linear polarized electromagnetic wave propagated through a ferromagnetic medium. When light is transmitted through a layer of magnet...
متن کاملInvestigation of nuclear magnetic resonance (NMR) and Binding Energies Clonidine Drug-Carbon Nano Tube: A Theoretical Study
In this work, we have studied binding of Clonidine drug (C9H9Cl2N3) with zigzag single walled carbonnanotubes (SWCNT) (5, 0) by theoretical methods of theory using Gaussian 09 software package.Binding energies, NMR parameters and HOMO- LUMO Gap energy were calculated. Results frombinding energies indicate that it is possible thermodynamically to bind Clonidine drug to SWCNT.The calculated NMR p...
متن کاملMagnetic resonance imaging of feline eye
The purpose of this study was to investigate magnetic resonance imaging (MRI) of the normal feline eyeand optic nerves using T1-weighted and T2-weighted images. A total of 6 healthy female domestic short haircats age 2-2.5 years and weighing 3.2 ± 0.4 kg were selected. Magnetic resonance imaging data werecollected using GEMSOW (Philips) at a magnetic field strength of 1.5 T. Dorsal, sagittal, a...
متن کامل